Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease

J Hepatol. 2017 Jan;66(1):132-141. doi: 10.1016/j.jhep.2016.08.024. Epub 2016 Sep 20.

Abstract

Background & aims: To date, no pharmacological therapy has been approved for non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to evaluate the therapeutic potential of poly ADP-ribose polymerase (PARP) inhibitors in mouse models of NAFLD.

Methods: As poly ADP-ribosylation (PARylation) of proteins by PARPs consumes nicotinamide adenine dinucleotide (NAD+), we hypothesized that overactivation of PARPs drives NAD+ depletion in NAFLD. Therefore, we assessed the effectiveness of PARP inhibition to replenish NAD+ and activate NAD+-dependent sirtuins, hence improving hepatic fatty acid oxidation. To do this, we examined the preventive and therapeutic benefits of the PARP inhibitor (PARPi), olaparib, in different models of NAFLD.

Results: The induction of NAFLD in C57BL/6J mice using a high-fat high-sucrose (HFHS)-diet increased PARylation of proteins by PARPs. As such, increased PARylation was associated with reduced NAD+ levels and mitochondrial function and content, which was concurrent with elevated hepatic lipid content. HFHS diet supplemented with PARPi reversed NAFLD through repletion of NAD+, increasing mitochondrial biogenesis and β-oxidation in liver. Furthermore, PARPi reduced reactive oxygen species, endoplasmic reticulum stress and fibrosis. The benefits of PARPi treatment were confirmed in mice fed with a methionine- and choline-deficient diet and in mice with lipopolysaccharide-induced hepatitis; PARP activation was attenuated and the development of hepatic injury was delayed in both models. Using Sirt1hep-/- mice, the beneficial effects of a PARPi-supplemented HFHS diet were found to be Sirt1-dependent.

Conclusions: Our study provides a novel and practical pharmacological approach for treating NAFLD, fueling optimism for potential clinical studies.

Lay summary: Non-alcoholic fatty liver disease (NAFLD) is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. PARP inhibitors given as a treatment in two different mouse models of NAFLD confer a protection against its development. PARP inhibitors may therefore represent a novel and practical pharmacological approach for treating NAFLD.

Keywords: NAD; Non-alcoholic fatty liver disease; PARP inhibitor; PARylation; Poly ADP-ribosylation; Sirtuin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Lipid Metabolism
  • Liver / metabolism
  • Liver / pathology
  • Mice
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • Non-alcoholic Fatty Liver Disease* / pathology
  • Oxidation-Reduction
  • Phthalazines / pharmacology*
  • Piperazines / pharmacology*
  • Poly(ADP-ribose) Polymerase Inhibitors / pharmacology
  • Poly(ADP-ribose) Polymerases / metabolism

Substances

  • Phthalazines
  • Piperazines
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases
  • olaparib