Modeling antimicrobial tolerance and treatment of heterogeneous biofilms

Math Biosci. 2016 Dec:282:1-15. doi: 10.1016/j.mbs.2016.09.005. Epub 2016 Sep 22.

Abstract

A multiphasic, hydrodynamic model for spatially heterogeneous biofilms based on the phase field formulation is developed and applied to analyze antimicrobial tolerance of biofilms by acknowledging the existence of persistent and susceptible cells in the total population of bacteria. The model implements a new conversion rate between persistent and susceptible cells and its homogeneous dynamics is bench-marked against a known experiment quantitatively. It is then discretized and solved on graphic processing units (GPUs) in 3-D space and time. With the model, biofilm development and antimicrobial treatment of biofilms in a flow cell are investigated numerically. Model predictions agree qualitatively well with available experimental observations. Specifically, numerical results demonstrate that: (i) in a flow cell, nutrient, diffused in solvent and transported by hydrodynamics, has an apparent impact on persister formation, thereby antimicrobial persistence of biofilms; (ii) dosing antimicrobial agents inside biofilms is more effective than dosing through diffusion in solvent; (iii) periodic dosing is less effective in antimicrobial treatment of biofilms in a nutrient deficient environment than in a nutrient sufficient environment. This model provides us with a simulation tool to analyze mechanisms of biofilm tolerance to antimicrobial agents and to derive potentially optimal dosing strategies for biofilm control and treatment.

Keywords: Biofilms; Hydrodynamics; Persister; Phase field.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Infective Agents / pharmacology*
  • Biofilms / drug effects*
  • Drug Tolerance*
  • Models, Biological*

Substances

  • Anti-Infective Agents