The conditions that a population experiences during one season can affect the strength of density dependence in the following season. In the tropics, many populations face their biggest challenges in the dry season due to limited food and cold-dry conditions. Seasonal environmental changes can be especially problematic for small, short-lived, seasonally breeding endotherms. To investigate the effects of seasonality on population dynamics, we studied five marsupial species in the Brazilian Atlantic Forest, using a 16-year dataset. We tested if (1) compensatory density feedback is stronger in the dry season, due to the high population sizes and limited food; (2) lower temperatures and the overall abundance of small mammals negatively affect dry season population growth rates; and (3) rainfall, a proxy for food availability, is positively related to wet season population growth rates. Population growth rates were regressed against seasonal population sizes and exogenous variables, and analyzed with linear autoregressive models. Seasonal compensatory density feedback occurred in both seasons, with compensation processes in just one season being sufficient to allow population persistence. Rainfall and the overall abundance of small mammals had little influence on populations, while colder temperatures decreased population growth rate of smaller species in both seasons. Although the study marsupials share similar life histories and phylogeny, they varied with respect to the season when compensatory density feedback was strongest. Our results demonstrate that seasonality plays a key role in driving marsupial population dynamics, and highlight the need to account for seasonality in demographic studies even in tropical environments.
Keywords: Food availability; Population regulation; Seasonal density dependence; Seasonal interactions; Small mammals.