A Macroscopic Mathematical Model for Cell Migration Assays Using a Real-Time Cell Analysis

PLoS One. 2016 Sep 28;11(9):e0162553. doi: 10.1371/journal.pone.0162553. eCollection 2016.

Abstract

Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number. In this paper we propose a macroscopic mathematical model, based on advection-reaction-diffusion partial differential equations, describing the cell migration assay using the real-time technology. We carried out numerical simulations to compare simulated model dynamics with data of observed biological experiments on three different cell lines and in two experimental settings: absence of chemotactic signals (basal migration) and presence of a chemoattractant. Overall we conclude that our minimal mathematical model is able to describe the phenomenon in the real time scale and numerical results show a good agreement with the experimental evidences.

Grants and funding

This work has been partially supported by the Italian Flagship Project InterOmics, by the PON01_02460, and by AIRC (Associazione Italiana per la Ricerca sul Cancro) 2013, project 14225.