Nuclear factor-kappa B (NF-κB) has been reported to play a pivotal role in many physiological processes including inflammation, apoptosis, and angiogenesis. We discovered a potent natural NF-κB inhibitor, dihydromyricetin, from the traditional herb Ampelopsis grossedentata, which has a long history of use in food and medicine. In this study, we demonstrated the effect of dihydromyricetin on NF-κB activation in TNF-α-induced HeLa cells. Dihydromyricetin was found to markedly inhibit the phosphorylation and degradation of the inhibitor of NF-κB alpha (IκBα), and subsequent nuclear translocation of p65. Dihydromyricetin also has an impact on upstream signaling of IKK through the inhibition of expression of adaptor proteins, TNF receptor-associated factor 2 (TRAF2), and receptor-interacting protein 1 (RIP1). Furthermore, the current results reveal that dihydromyricetin led to the downregulation of target genes involved in inflammation, proliferation, as well as potentiation of TNF-α-induced apoptosis through suppressing the activation of NF-κB. In conclusion, our data indicate that dihydromyricetin may be a potentially useful therapeutic agent for inflammatory diseases.
Keywords: Apoptosis; Dihydromyricetin; Inflammation; IκBα; NF-κB.