Purpose: The purpose of this work was to determine the predictive value of chemical exchange saturation transfer (CEST) metrics in brain metastases treated with stereotactic radiosurgery (SRS).
Methods: CEST spectra at a radiofrequency power of 0.52 µT were collected on a 3 Tesla (T) magnetic resonance imaging from 25 patients at three time points: pretreatment, 1 week, and 1 month post-treatment. Amide proton transfer-weighted images and maps of the amplitude and width of Lorentzian-shaped CEST peaks and the relaxation-compensated AREX metric were constructed at the offset frequencies of amide, amine, and relayed nuclear Overhauser effect (NOE) from aliphatic groups as well as the broad magnetization transfer effect. Pretreatment CEST metrics, as well as CEST metric changes at 1 week post-treatment, were compared to changes in tumor volume at 1 month.
Results: Significant (P < 0.05) 1-week predictive metrics included NOE peak amplitude (R = 0.69) in normal-appearing white matter (NAWM) and width (R = -0.55) in tumor. Baseline NOE in contralateral NAWM was negatively correlated (R = -0.69) with volume changes at 1 month. Metrics-defined outside tumor margins had higher correlation with volume changes than tumor regions of interest.
Conclusion: CEST metrics, in particular, the NOE peak amplitude, can predict volume changes 1 month post-SRS. Magn Reson Med 78:1110-1120, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Keywords: CEST; SRS; brain tumor; chemical exchange saturation transfer; human brain metastasis; stereotactic radiosurgery; therapy response.
© 2016 International Society for Magnetic Resonance in Medicine.