Fabrication of NaYF4:Yb,Er Nanoprobes for Cell Imaging Directly by Using the Method of Hydrion Rivalry Aided by Ultrasonic

Nanoscale Res Lett. 2016 Dec;11(1):441. doi: 10.1186/s11671-016-1651-y. Epub 2016 Oct 1.

Abstract

A novel method of fabricating water-soluble bio-probes with ultra-small size such as NaYF4:Yb,Er (18 nm), NaGdF4:Yb,Er (8 nm), CaF2:Yb,Er (10 nm), PbS (7 nm), and ZnS (12 nm) has been developed to provide for the solubility switch of nanoparticles from oil-soluble to water-soluble in terms of hydrion rivalry aided by ultrasonic. Using NaYF4:Yb,Er (18 nm) as an example, we evaluate the properties of as-prepared water-soluble nanoparticles (NPs) by using thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ) testing, and 1H nuclear magnetic resonance (1HNMR). The measured ζ value shows that the newly prepared hydrophilic NaYF4:Yb,Er NPs are the positively charged particles. Acting as reactive electrophilic moiety, the freshly prepared hydrophilic NaYF4:Yb,Er NPs have carried out the coupling with amino acids and fluorescence labeling and imaging of HeLa cells directly. Experiments indicate that the method of hydrion rivalry aided by ultrasonic provides a simple and novel opportunity to transform hydrophobic NPs into hydrophilic NPs with good reactivity, which can be imaging some specific biological targets directly.

Keywords: Bioimaging; Hydrion rivalry aided by ultrasonic; NaYF4:Yb,Er; Nanoprobe.