The objective of this study was to determine the level and duration of IgG antibodies induced against killed whole Tritrichomonas foetus and T foetus-purified surface antigen (TF1.17) in serum, vaginal, and uterine secretions after systemic immunization of beef cows with a vaccine containing killed whole T foetus. Twenty nonpregnant beef cows were randomly assigned to vaccine or control groups as follows: Vaccine (n = 10): cows received 2 mL of a commercial vaccine containing killed whole T foetus subcutaneously and a 2-mL booster 2 weeks later. Control (n = 10): cows received 2 mL of sterile saline on the same schedule. Vaginal secretions and blood samples were collected on Days 0, 8, 15, 22, 29, 36, 43, 50, 60, 75, 89, 110, 146, and 182 relative to day of primary vaccination. Uterine flush fluid was collected on Days 0, 15, 29, and 43 after the day of primary vaccination. Samples were assayed for IgG antibodies to the killed whole T foetus and surface antigen TF1.17 using enzyme-linked immunosorbent assay. Serum whole T foetus-specific IgG levels were significantly increased (between Days 15 and 182) following vaccination with T foetus or with saline. No differences between vaccinates and controls in uterine responses to whole-cell antigen were detected. Serum anti-TF1.17 IgG responses to vaccination were significantly higher than Day 0 throughout the immunization period (P < 0.001) and were higher than responses in control animals on each day post immunization through Day 146 (P < 0.001). A significant rise in TF1.17-specific IgG levels was observed in vaginal and uterine fluids from Day 15 post vaccination compared to the Day 0 levels. These levels remained significantly elevated in vaginal and uterine fluids through Days 75 (P < 0.05) and 43 (P < 0.001) after primary vaccination, respectively. Antibody levels in serum, vaginal, and uterine secretions against TF1.17 remained low in the control group throughout the study. In conclusion, vaccination of beef cows with a commercial vaccine containing T foetus induced significant increase in the levels of IgG to the T foetus TF1.17 surface antigen in serum, vaginal secretions, and uterine fluid, which remained elevated through Days 43, 75, and 182 in uterine fluids, vaginal secretions, and serum, respectively. Since purified TF1.17 antigen has been shown to protect against experimental T foetus infection in heifers, the vaccine-induced TF1.17-specific IgG response is likely to be important in the prevention of trichomoniasis in beef cattle.
Keywords: Beef cows; IgG antibody; Tritrichomonas foetus; Vaccination.
Copyright © 2016 Elsevier Inc. All rights reserved.