Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

Prog Biophys Mol Biol. 2017 Sep:128:39-46. doi: 10.1016/j.pbiomolbio.2016.09.008. Epub 2016 Sep 30.

Abstract

At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.

Keywords: Argonaute; Enhanced sampling; Kinetics; Markov-state-models; Mechanism; Molecular dynamics simulation; Protein motions; Protein-DNA/RNA docking; RNA interference.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Argonaute Proteins / metabolism*
  • Humans
  • RNA Interference*
  • Thermus thermophilus / genetics
  • Thermus thermophilus / metabolism

Substances

  • Argonaute Proteins