Fe3O4@NiFexOy Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte

ACS Appl Mater Interfaces. 2016 Nov 2;8(43):29461-29469. doi: 10.1021/acsami.6b09888. Epub 2016 Oct 24.

Abstract

The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte.

Keywords: OER; core−shell nanostructure; electrocatalysts; iron oxide; magnetite; nanoparticle; oxygen evolution reaction.