Pyruvate dehydrogenase-complex (AcoABCD) and pyruvate formate-lyase (PFL) are two pathways responsible for synthesis of acetyl-CoA from pyruvate (pyruvate acetyl-CoA switch). The two pathways were individually deleted in Klebsiella pneumoniae, and the role of the pyruvate acetyl-CoA switch in 1,3-propanediol production was investigated. Fermentation results showed that the two pathways were both active in the wild-type strain. Acetyl-CoA formation between the two pathways was equal in the wild-type strain. The pflB mutant produced high level of lactic acid, and deletion of ldhA eliminated lactic acid synthesis. The conversion ratio of glycerol to 1,3-propanediol in the pflB-ldhA mutant reached 0.541 g/g, which was 9.4 % higher than that of the wild-type strain. However, the productivity of 1,3-propanediol was decreased in the pflB-ldhA mutant. In contrast, the productivity of 1,3-propanediol was increased by 19 % in the acoABCD mutant, with the disadvantage of lower substrate conversion ratio. Regulating the pyruvate acetyl-CoA switch presents a novel way to improve the conversion ratio or productivity of 1,3-propanediol produced by K. pneumoniae.
Keywords: 1, 3-Propanediol; Klebsiella pneumoniae; Pyruvate dehydrogenase complex; Pyruvate formate-lyase.