Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function

Biochem J. 2016 Dec 15;473(24):4593-4607. doi: 10.1042/BCJ20160441. Epub 2016 Oct 14.

Abstract

Heterozygous mutations in the gene encoding fibroblast growth factor 10 (FGF10) or its cognate receptor, FGF-receptor 2 IIIb result in two human syndromes - LADD (lacrimo-auriculo-dento-digital) and ALSG (aplasia of lacrimal and salivary glands). To date, the partial loss-of-FGF10 function in these patients has been attributed solely to perturbed paracrine signalling functions between FGF10-producing mesenchymal cells and FGF10-responsive epithelial cells. However, the functioning of a LADD-causing G138E FGF10 mutation, which falls outside its receptor interaction interface, has remained enigmatic. In the present study, we interrogated this mutation in the context of FGF10's protein sequence and three-dimensional structure, and followed the subcellular fate of tagged proteins containing this or other combinatorial FGF10 mutations, in vitro We report that FGF10 harbours two putative nuclear localization sequences (NLSs), termed NLS1 and NLS2, which individually or co-operatively promote nuclear translocation of FGF10. Furthermore, FGF10 localizes to a subset of dense fibrillar components of the nucleolus. G138E falls within NLS1 and abrogates FGF10's nuclear translocation whilst attenuating its progression along the secretory pathway. Our findings suggest that in addition to its paracrine roles, FGF10 may normally play intracrine role/s within FGF10-producing cells. Thus, G138E may disrupt both paracrine and intracrine function/s of FGF10 through attenuated secretion and nuclear translocation, respectively.

Keywords: LADD syndrome; fibroblast growth factors; mutation; nuclear localization.

MeSH terms

  • Abnormalities, Multiple / genetics
  • Abnormalities, Multiple / metabolism*
  • Active Transport, Cell Nucleus / genetics
  • Active Transport, Cell Nucleus / physiology
  • Amino Acid Sequence
  • Blotting, Western
  • Cell Nucleus / metabolism*
  • Cell Proliferation / genetics
  • Cell Proliferation / physiology
  • Fibroblast Growth Factor 10 / chemistry*
  • Fibroblast Growth Factor 10 / genetics
  • Fibroblast Growth Factor 10 / metabolism*
  • HEK293 Cells
  • Hearing Loss / genetics
  • Hearing Loss / metabolism*
  • Humans
  • Immunohistochemistry
  • Lacrimal Apparatus Diseases / genetics
  • Lacrimal Apparatus Diseases / metabolism*
  • Molecular Sequence Data
  • Mutation
  • Protein Transport / genetics
  • Protein Transport / physiology
  • Syndactyly / genetics
  • Syndactyly / metabolism*
  • Tooth Abnormalities / genetics
  • Tooth Abnormalities / metabolism*

Substances

  • Fibroblast Growth Factor 10

Supplementary concepts

  • Lacrimoauriculodentodigital syndrome