The NADPH oxidase proteins catalyse the formation of superoxide anion which act as signalling molecules in physiological and pathological processes. Nox1-dependent NADPH oxidase is expressed in heart, lung, colon, blood vessels and brain. Different strategies involving Nox1 inhibition based on diphenylene iodonium derivatives are currently tested for colorectal cancer therapy. Here, after peptides screening on Nox1-dependent NADPH oxidase assay in HT-29 cells, we identify a peptide (referred to as NF02), cell-active, that potently block Nox1-dependent reactive oxygen species generation. Study of DEPMPO adduct formation by electron paramagnetic resonance showed that NF02 has no superoxide scavenging activity and no impact on cellular reactive oxygen species-producing enzymes such xanthine oxidase. NF02 was not cytotoxic, inhibited reactive oxygen species production of reconstituted Nox1/Noxo1/Noxa1 complex in HEK293 and did not decrease Nox2 dependent cellular NADPH oxidase reactive oxygen species production. Finally, NF02 inhibited cell migration and invasion of colorectal cancer cells which is consistent with the described impact of Nox1 inhibitors on cell migration. NF02 peptide is a new NADPH oxidase inhibitor specific for Nox1 over Nox2 and xanthine oxidase which might represent a useful Nox1 tool with potential therapeutic insights.
Keywords: Cell migration; EPR spin trapping; NADPH oxidase; Nox1; Reactive oxygen species; Superoxide.
Copyright © 2016 Elsevier B.V. All rights reserved.