Despite the wide application of quantum dots (QDs) in electronics, pharmacy and nanomedicine, limited data is available on their environmental health risk. To advance our current understanding of the environmental impact of these engineered nanomaterials, the aim of this review is to give a detailed insight on the existing information concerning the behaviour, transformation and fate of QDs in the aquatic environment, as well as on its mode of action (MoA), ecotoxicity, trophic transfer and biomagnification at various trophic levels (micro-organisms, aquatic invertebrates and vertebrates). Data show that several types of Cd-based QDs, even at low concentrations (<mgCdL-1), induce different toxic effects compared to their dissolved counterpart, indicating nano-specific ecotoxicity. QD ecotoxicity at different trophic levels is highly dependent on its physico-chemical properties, environmental conditions, concentration and exposure time, as well as, species, while UV irradiation increases its toxicity. The state of the art regarding the MoA of QDs according to taxonomic groups is summarised and illustrated. Accumulation and trophic transfer of QDs was observed in freshwater and seawater species, while limited biomagnification and detoxification processes were detected. Finally, current knowledge gaps are discussed and recommendations for future research identified. Overall, the knowledge available indicates that in order to develop sustainable nanotechnologies there is an urgent need to develop Cd-free QDs and new "core-shell-conjugate" QD structures.
Keywords: Aquatic toxicology; Biomarkers; Ecotoxicity; Nanomaterials; Nanoparticles.
Copyright © 2016 Elsevier Ltd. All rights reserved.