Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Despite the availability of several treatment strategies, resistance to chemotherapeutic agents, which limits the effectiveness of anticancer drugs, is a major problem in cancer therapy. In this study, we used a histone deacetylases inhibitor (HDACi) to establish drug-resistant HCC cells and further analyzed the molecular mechanisms underlying the development of resistance in HCC cells. Compared with the parental cells, HDACi-resistant cells showed high metastatic and pro-survival abilities. Two-dimensional electrophoresis data showed that the cofilin-1 (CFL-1) protein was altered in HDACi-resistant cells and was highly expressed in resistant cells compared with parental cells. The molecular function of CFL-1 is actin depolymerization, and it is involved in tumor metastasis. In this study, we showed that CFL-1 inhibition decreased cell migration and increased cell apoptosis in HDACi-resistant cells. We observed that HDACi induced ROS accumulation in cells and apoptosis via promotion of the CFL-1 interaction with Bax and CFL-1 translocation to the mitochondria, resulting in cytochrome C release. Importantly, phosphorylation of CFL-1 by activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) confers strong protection against HDAC inhibitor-induced cell injury. p-CFL-1 shows a loss of affinity with Bax and will not translocate to mitochondria, stably remaining in the cytoplasm. These results indicate that phosphorylation to inactivate CFL-1 decreased the chemosensitivity to HDAC inhibitors and resulting in drug resistance of HCC cells.