Development of myometrium in young female rats was stimulated by administration of diethylstilboestrol. Plasma membrane and sarcoplasmic reticulum from rat myometrium were separated by a new and rapid method using a Percoll gradient. Calcium uptake was inhibited in plasma membrane vesicles isolated from oxytocin-treated myometrium, while no consistent effect of oxytocin was found on the Ca2+ uptake in the sarcoplasmic reticulum. Oxytocin regulated the plasma membrane Ca2+ pump by decreasing its apparent affinity for Ca2+ without affecting its maximal velocity. The K1/2 for Ca2+ in the absence of calmodulin was 0.41 +/- 0.04 microM in normal membranes; this was increased to 0.93 +/- 0.12 microM in oxytocin-treated membranes. Calmodulin decreased the K1/2 for Ca2+ to 0.27 +/- 0.027 microM and oxytocin also increased this, to 0.46 +/- 0.061 microM. The effect of oxytocin on the plasma membrane Ca2+ pump was highly dependent on the hormonal status of the animals. When the diethylstilboestrol was administered together with progesterone, the inhibitory action of oxytocin was totally suppressed, consistent with the expected action of this agent. The results suggest that regulation of the plasma membrane Ca2+ pump may be important in the prolonged elevation of intracellular Ca2+ caused by oxytocin.