The proteolysis of the LexA repressor in the presence of RecA and various polynucleotides was studied by measuring the fluorescence decrease of LexA upon cleavage. The results were compared with the DNA binding of RecA to investigate the presence of multiple DNA-RecA complexes. All single-stranded polydeoxyribonucleotides (DNA) efficiently stimulated the proteolysis and the maximum activation was reached in the presence of three or four nucleotides of polynucleotide per monomer of RecA. The stimulative effect was decreased in the presence of larger amounts of poly(dA), poly(dT) or heat-denatured DNA, whereas the excess of single-stranded DNAs chemically modified with chloroacetaldehyde did not present such an inhibitory effect, despite the fact that a second DNA molecule is likely to interact with RecA as monitored by the intrinsic fluorescence of these DNA species. The complicated cleavage promotion and inhibition pattern is tentatively explained by a three-state model assuming that RecA may interact with three single-stranded DNA molecules. According to this model, occupation of the first site would be necessary and sufficient for cleavage promotion, the second site would be neutral with respect to cleavage and the occupation of the third site would inhibit LexA cleavage at least partially. Double-stranded natural DNA did not stimulate cleavage, even under conditions where RecA binds quantitatively to the DNA. No polyribonucleotides (RNA) examined showed a significant stimulative effect either, nor did they appear to interact with RecA.