Patch clamp studies from dorsal root ganglia (DRGs) neurons have increased our understanding of the peripheral nervous system. Currently, the majority of recordings are conducted on dissociated DRG neurons, which is a standard preparation for most laboratories. Neuronal properties, however, can be altered by axonal injury resulting from enzyme digestion used in acquiring dissociated neurons. Further, dissociated neuron preparations cannot fully represent the microenvironment of the DRG since loss of contact with satellite glial cells that surround the primary sensory neurons is an unavoidable consequence of this method. To overcome the limitations in using conventional dissociated DRG neurons for patch clamp recordings, in this report we describe a method to prepare intact DRGs and conduct patch clamp recordings on individual primary sensory neurons ex vivo. This approach permits the fast and straightforward preparation of intact DRGs, mimicking in vivo conditions by keeping DRG neurons associated with their surrounding satellite glial cells and basement membrane. Furthermore, the method avoids axonal injury from manipulation and enzyme digestion such as when dissociating DRGs. This ex vivo preparation can additionally be used to study the interaction between primary sensory neurons and satellite glial cells.