MiR-185/AKT and miR-29a/collagen 1a pathways are activated in IPF BAL cells

Oncotarget. 2016 Nov 15;7(46):74569-74581. doi: 10.18632/oncotarget.12740.

Abstract

MicroRNA signatures of BAL cells and alveolar macrophages are currently lacking in IPF. Here we sought to investigate the expression of fibrosis-related microRNAs in the cellular component of the BAL in IPF. We thus focused on microRNAs previously associated with fibrosis (miR-29a, miR-29b, miR-29c, let-7d, and miR-21) and rapid IPF progression (miR-185, miR-210, miR-302c-3p miR-376c and miR-423-5p). Among the tested microRNAs miR-29a and miR-185 were found significantly downregulated in IPF while miR-302c-3p and miR-376c were not expressed by BAL cells. Importantly, the downregulation of miR-29a inversely correlated with the significantly increased levels of COL1A1 mRNA in IPF BAL cells. Collagen 1 a was found mainly overexpressed in alveolar macrophages and not other cell types of the BAL by immunofluorescence. In view of the downregulation of miR-185, we tested the response of THP-1 macrophages to profibrotic cytokine TGFb and observed the downregulation of miR-185. Conversely, proinflammatory stimulation lead to miR-185 upregulation. Upon examination of the mRNA levels of known miR-185 targets AKT1, DNMT1 and HMGA2, no significant correlations were observed in the BAL cells. However, increased levels of total AKT and AKTser473 phosphorylation were observed in the IPF BAL cells. Furthermore, miR-185 inhibition in THP-1 macrophages resulted in significant increase of AKTser473 phosphorylation. Our study highlights the importance of BAL microRNA signatures in IPF and identifies significant differences in miR-185/AKT and miR-29a/collagen axes in the BAL cells of IPF patients.

Keywords: AKT; IPF; Immune response; Immunity; Immunology and Microbiology Section; bronchoalveolar lavage fluid; collagen; microRNA.

MeSH terms

  • Aged
  • Bronchoalveolar Lavage Fluid / cytology
  • Cell Line
  • Collagen Type I / genetics*
  • Collagen Type I / metabolism
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation* / drug effects
  • Humans
  • Idiopathic Pulmonary Fibrosis / genetics*
  • Idiopathic Pulmonary Fibrosis / metabolism*
  • Idiopathic Pulmonary Fibrosis / pathology
  • Idiopathic Pulmonary Fibrosis / physiopathology
  • Leukocyte Count
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Male
  • MicroRNAs / genetics*
  • Middle Aged
  • Proto-Oncogene Proteins c-akt / genetics*
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA Interference
  • Respiratory Function Tests
  • Risk Factors
  • Signal Transduction
  • Transforming Growth Factor beta1 / pharmacology

Substances

  • Collagen Type I
  • MIRN185 microRNA, human
  • MIRN29a microRNA, human
  • MicroRNAs
  • Transforming Growth Factor beta1
  • Proto-Oncogene Proteins c-akt