Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo

Brain Struct Funct. 2017 May;222(4):1809-1827. doi: 10.1007/s00429-016-1309-7. Epub 2016 Oct 25.

Abstract

Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

Keywords: Interneuron; Ivy cell; LTD; LTP; Oscillation; Parvalbumin.

MeSH terms

  • Action Potentials
  • Animals
  • CA1 Region, Hippocampal / cytology
  • CA1 Region, Hippocampal / physiology*
  • Electric Stimulation
  • GABAergic Neurons / cytology
  • GABAergic Neurons / physiology*
  • Interneurons / cytology
  • Interneurons / physiology*
  • Long-Term Potentiation*
  • Long-Term Synaptic Depression*
  • Male
  • Rats, Sprague-Dawley