The thalamus is implicated in the neuropathology of schizophrenia, and multiple modalities of noninvasive neuroimaging provide converging evidence for altered thalamocortical dynamics in the disorder, such as functional connectivity and oscillatory power. However, it remains a challenge to link these neuroimaging biomarkers to underlying neural circuit mechanisms. One potential path forward is a "Computational Psychiatry" approach that leverages computational models of neural circuits to make predictions for the dynamical impact dynamical impact on specific thalamic disruptions hypothesized to occur in the pathophysiology of schizophrenia. Here we review biophysically-based computational models of neural circuit dynamics for large-scale resting-state networks which have been applied to schizophrenia, and for thalamic oscillations. As a key aspect of thalamocortical dysconnectivity in schizophrenia is its regional specificity, it is important to consider potential sources of intrinsic heterogeneity of cellular and circuit properties across cortical and thalamic structures.
Keywords: Computational model; Functional connectivity; Neural oscillations; Thalamic reticular nucleus; Thalamus.
Copyright © 2016 Elsevier B.V. All rights reserved.