Purpose: To determine the incidence of pseudoprogression (PP) after spine stereotactic body radiation therapy based on a detailed and quantitative assessment of magnetic resonance imaging (MRI) morphologic tumor alterations, and to identify predictive factors distinguishing PP from local recurrence (LR).
Methods and materials: A retrospective analysis of 35 patients with 49 spinal segments treated with spine stereotactic body radiation therapy, from 2009 to 2014, was conducted. The median number of follow-up MRI studies was 4 (range, 2-7). The gross tumor volumes (GTVs) within each of the 49 spinal segments were contoured on the pretreatment and each subsequent follow-up T1- and T2-weighted MRI sagittal sequence. T2 signal intensity was reported as the mean intensity of voxels constituting each volume. LR was defined as persistent GTV enlargement on ≥2 serial MRI studies for ≥6 months or on pathologic confirmation. PP was defined as a GTV enlargement followed by stability or regression on subsequent imaging within 6 months. Kaplan-Meier analysis was used for estimation of actuarial local control, disease-free survival, and overall survival.
Results: The median follow-up was 23 months (range, 1-39 months). PP was identified in 18% of treated segments (9 of 49) and LR in 29% (14 of 49). Earlier volume enlargement (5 months for PP vs 15 months for LR, P=.005), greater GTV to reference nonirradiated vertebral body T2 intensity ratio (+30% for PP vs -10% for LR, P=.005), and growth confined to 80% of the prescription isodose line (80% IDL) (8 of 9 PP cases vs 1 of 14 LR cases, P=.002) were associated with PP on univariate analysis. Multivariate analysis confirmed an earlier time to volume enlargement and growth within the 80% IDL as significant predictors of PP. LR involved the epidural space in all but 1 lesion, whereas PP was confined to the vertebral body in 7 of 9 cases.
Conclusions: PP was observed in 18% of treated spinal segments. Tumor growth confined to the 80% IDL and earlier time to tumor enlargement were predictive for PP.
Copyright © 2016 Elsevier Inc. All rights reserved.