A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density

ChemSusChem. 2017 Mar 22;10(6):1094-1099. doi: 10.1002/cssc.201600843. Epub 2016 Oct 28.

Abstract

We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H2 (approximately 98 % CO and 2 % H2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm-2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO2 reduction as an approach to reduce atmospheric CO2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources.

Keywords: carbon nanotubes; carbon nitride; catalysis; co2 conversion; metal-free.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry*
  • Carbon Dioxide / chemistry*
  • Carbon Monoxide / chemistry*
  • Catalysis
  • Electric Conductivity*
  • Electrochemistry
  • Electrodes
  • Models, Molecular
  • Molecular Conformation
  • Nanocomposites / chemistry
  • Nanotubes, Carbon / chemistry*
  • Nitriles / chemistry
  • Nitrogen / chemistry*
  • Oxidation-Reduction

Substances

  • Nanotubes, Carbon
  • Nitriles
  • Carbon Dioxide
  • cyanogen
  • Carbon
  • Carbon Monoxide
  • Nitrogen