High-Pressure Phase Transformations in TiPO4 : A Route to Pentacoordinated Phosphorus

Angew Chem Int Ed Engl. 2016 Nov 21;55(48):15053-15057. doi: 10.1002/anie.201608530. Epub 2016 Oct 31.

Abstract

Titanium(III) phosphate, TiPO4 , is a typical example of an oxyphosphorus compound containing covalent P-O bonds. Single-crystal X-ray diffraction studies of TiPO4 reveal complex and unexpected structural and chemical behavior as a function of pressure at room temperature. A series of phase transitions lead to the high-pressure phase V, which is stable above 46 GPa and features an unusual oxygen coordination of the phosphorus atoms. TiPO4 -V is the first inorganic phosphorus-containing compound that exhibits fivefold coordination with oxygen. Up to the highest studied pressure of 56 GPa, TiPO4 -V coexists with TiPO4 -IV, which is less dense and might be kinetically stabilized. Above a pressure of about 6 GPa, TiPO4 -II is found to be an incommensurately modulated phase whereas a lock-in transition at about 7 GPa leads to TiPO4 -III with a fourfold superstructure compared to the structure of TiPO4 -I at ambient conditions. TiPO4 -II and TiPO4 -III are similar to the corresponding low-temperature incommensurate and commensurate magnetic phases and reflect the strong pressure dependence of the spin-Peierls interactions.

Keywords: X-ray diffraction; high-pressure chemistry; phase transitions; phosphorus; spin-Peierls compounds.

Publication types

  • Research Support, Non-U.S. Gov't