The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas

Rev Sci Instrum. 2016 Oct;87(10):103505. doi: 10.1063/1.4964731.

Abstract

Laser produced plasmas lend to several interesting applications. The study of X-ray emission from this kind of plasmas is important not only to characterize plasmas itself but also to study the application of these particular plasmas as intense X-ray sources. In particular several emission configurations can be obtained using different kinds of targets and tuning the characteristics of the laser pulse delivered to the target. Typically, laser pulse duration ranges between a few tens of femtoseconds and tens of nanoseconds, with energies from few mJ to tens of kJ. X-ray photon emissions last for times comparable to the laser pulses and during this time a great number of photons can be emitted. The following paper presents a measure of the soft-X-ray emission on the ECLIPSE laser facility realized with a new triple-GEM gas detector (GEMpix). It is a hybrid gas detector with a C-MOS front-end electronics based on Medipix chips. In the present work, different targets have been used in order to test X-rays of different energies. In this paper, in particular, we present results obtained for copper and iron targets. GEMpix is able to realize a 2D imaging of the X-ray emission from plasma with a signal proportional to the energy released in the gas of the detector active volume. Then through a preliminary single photon equalization realized at the NIXT lab (ENEA), also the number of photons reaching the area of the detector has been estimated.