A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13087-13092. doi: 10.1073/pnas.1606162113. Epub 2016 Nov 1.

Abstract

In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

Keywords: CCI; carotenoid pigments; chlorophyll/carotenoid index; evergreen conifers; gross primary productivity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carotenoids / metabolism*
  • Chlorophyll / metabolism*
  • Photosynthesis*
  • Pigmentation
  • Pinus / metabolism*
  • Plant Leaves / metabolism*
  • Satellite Imagery*
  • Seasons

Substances

  • Chlorophyll
  • Carotenoids