Characterization of Human Monocyte-derived Dendritic Cells by Imaging Flow Cytometry: A Comparison between Two Monocyte Isolation Protocols

J Vis Exp. 2016 Oct 18:(116):54296. doi: 10.3791/54296.

Abstract

Dendritic cells (DCs) are antigen presenting cells of the immune system that play a crucial role in lymphocyte responses, host defense mechanisms, and pathogenesis of inflammation. Isolation and study of DCs have been important in biological research because of their distinctive features. Although they are essential key mediators of the immune system, DCs are very rare in blood, accounting for approximately 0.1 - 1% of total blood mononuclear cells. Therefore, alternatives for isolation methods rely on the differentiation of DCs from monocytes isolated from peripheral blood mononuclear cells (PBMCs). The utilization of proper isolation techniques that combine simplicity, affordability, high purity, and high yield of cells is imperative to consider. In the current study, two distinct methods for the generation of DCs will be compared. Monocytes were selected by adherence or negatively enriched using magnetic separation procedure followed by differentiation into DCs with IL-4 and GM-CSF. Monocyte and MDDC viability, proliferation, and phenotype were assessed using viability dyes, MTT assay, and CD11c/ CD14 surface marker analysis by imaging flow cytometry. Although the magnetic separation method yielded a significant higher percentage of monocytes with higher proliferative capacity when compared to the adhesion method, the findings have demonstrated the ability of both techniques to simultaneously generate monocytes that are capable of proliferating and differentiating into viable CD11c+ MDDCs after seven days in culture. Both methods yielded > 70% CD11c+ MDDCs. Therefore, our results provide insights that contribute to the development of reliable methods for isolation and characterization of human DCs.

Publication types

  • Video-Audio Media

MeSH terms

  • Cell Differentiation
  • Cell Separation
  • Cells, Cultured
  • Dendritic Cells*
  • Flow Cytometry*
  • Humans
  • Leukocytes, Mononuclear*
  • Monocytes