Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma

Am J Cancer Res. 2016 Oct 1;6(10):2140-2161. eCollection 2016.

Abstract

Brain metastatic papillary thyroid carcinomas (PTCs) are afflicted with unfavorable prognosis; however, the underlying molecular genetics of these rare metastases are virtually unknown. In this study, we compared whole transcript microarray expression profiles of a BRAF mutant, brain metastasis from a PTC, including its technical replicate (TR), with eight non-brain metastatic PTCs and eight primary brain tumors. The top 95 probe sets (false discovery rate (FDR) p-value < 0.05 and fold change (FC) > 2) that were differentially expressed between the brain metastatic PTC, including the TR, and both, non-brain metastatic PTCs and primary brain tumors were in the vast majority upregulated and comprise, e.g. ROS1, MYBPH, SLC18A3, HP, SAA2-SAA4, CP, CCL20, GFAP, RNU1-120P, DMBT1, XDH, CXCL1, PI3, and NAPSA. Cytokines were represented by 10 members in the top 95 probe sets. Pathway and network analysis (p-value < 0.05 and FC > 2) identified granulocytes adhesion and diapedesis as top canonical pathway. Most significant upstream regulators were lipopolysaccharide, TNF, NKkB (complex), IL1A, and CSF2. Top networks categorized under diseases & functions were entitled migration of cells, cell movement, cell survival, apoptosis, and proliferation of cells. Probe sets that were significantly shared between the brain metastatic PTC, the TR, and primary brain tumors include CASP1, CASP4, C1R, CC2D2B, RNY1P16, WDR72, LRRC2, ZHX2, CITED1, and the noncoding transcript AK128523. Taken together, this study identified a set of candidate genes and biofunctions implicated in, so far nearly uncharacterized, molecular processes of a brain metastasis from a PTC.

Keywords: Papillary thyroid carcinoma; brain metastasis; cytokines; diapedesis; microarray expression profiling.