Myometrial development from the prenatal to adult period was examined in rats and mice 1) by histologic and immunocytochemical methods with anti-actin, -vimentin, and -laminin to assess cytodifferentiation of smooth muscle and fibroblastic cells; and 2) by morphometric procedures to assess quantitatively the expression of cellular orientation in the emerging inner circular myometrial layer. Uterine mesenchymal cells initially were uniformly vimentin-positive, undifferentiated, and randomly oriented during the late fetal period. By the early neonatal period, three mesenchymal layers became recognizable histologically, the middle one of which (prospective circular myometrium) developed distinct circular orientation and differentiated into a layer composed of actin-positive smooth muscle cells. The cells of the inner mesenchymal layer initially exhibited radial orientation. By 10 days postpartum, the outer longitudinal mesenchymal layer differentiated into bundles of smooth muscle cells representing the longitudinal myometrium. The inner mesenchymal layer remained vimentin-positive and differentiated into the randomly ordered endometrial stroma. The cells of the middle and outer mesenchymal layers that were destined to form myometrium initially expressed vimentin throughout and then coexpressed vimentin and actin, but with time vimentin staining disappeared in the maturing smooth muscle cells as they expressed actin.