A novel g-C3N4 nanosheets embedded with C3N4 QDs nanocomposites (QD@CNNS) was prepared by simple oxidation using hydrogen peroxide and UV light irradiation. This nanocomposite exhibits more stable and stronger electrochemiluminescent (ECL) behavior compared with CNNS. Coupling this nanocomposite with Fc-labeled aptamer, a signal-on aptasensor for platelet derived growth factor BB (PDGF-BB) is fabricated. Initially, the Fc-labeled aptamer binds onto QD@CNNS via π-π conjugation and electrostatic interaction, quenching ECL emission from QD@CNNS. The introduction of target efficiently recovers the ECL signal by the formation of PDGF-BB/aptamer complex. The ECL intensity is proportion to the concentration of PDGF-BB in the range of 0.02-80nM with a detection limit of 0.013nM. This work demonstrates a simple synthesis method to obtain QD@CNNS with excellent ECL behavior, and opens up the application of g-C3N4 nanocomposite in signal-on aptasensing.
Keywords: C(3)N(4) QDs@ C(3)N(4) nanosheet; Electrochemiluminescent; Platelet derived growth factor BB; Signal-on aptasensor.
Copyright © 2016. Published by Elsevier B.V.