This study investigated the effects of different levels of habitual physical activity (PA) assessed by pedometry on bone turnover markers of preadolescent girls according to a cross-sectional experimental design. Sixty prepubertal girls of similar chronological age, bone age, maturity level, and nutritional status were assigned to a low PA (LPA; n = 25), a moderate PA (MPA; n = 17), or a high PA (HPA; n = 18) group. Dual-energy X-ray absorptiometry was used to measure areal bone mineral density (BMD) and bone mineral content (BMC) of the lumbar spine (L2-L4) and dominant hip (femoral neck and trochanter). Blood was collected for the measurement of alkaline phosphatase (ALP), bone-specific ALP (BSAP), procollagen type I N-terminal propeptide (PINP), C-terminal telopeptide of collagen I (CTX), parathyroid hormone (PTH), osteocalcin, thyroid-stimulating hormone, estradiol, testosterone, luteinizing hormone, and follicle-stimulating hormone concentrations. ANOVA revealed that the HPA group (18,695 ± 1244 steps per day) had a lower daily energy intake and body mass than the MPA group (10,774 ± 521 steps per day) and the LPA group (7633 ± 1099 steps per day). The HPA group had higher (P < 0.05) lumbar and hip BMD and hip BMC than the LPA group and higher (P < 0.05) lumbar BMD than the MPA group. The MPA group had higher (P < 0.05) hip BMC than the LPA group. The HPA group had greater (P < 0.05) values of BSAP, PINP, and ALP and lower (P < 0.05) values of PTH and CTX than the LPA group but not the MPA group. A partial correlation analysis (adjusted for body mass index) revealed a positive correlation of steps per day with BMD and BSAP concentration and a negative correlation with PTH and CTX concentration. In conclusion, PA increases BMD and BMC of premenarcheal girls by favoring bone formation over bone resorption.
Keywords: Bone markers; Bone remodeling; Children; Physical activity; Preadolescence.