Multiple sources of data in combination are essential for species delimitation and classification of difficult taxonomic groups. Here we investigate a cicada taxon with unusual cryptic diversity and we attempt to resolve seemingly contradictory data sets. Cicada songs act as species-specific premating barriers and have been used extensively to reveal hidden taxonomic diversity in morphologically similar species. The Palaearctic Cicadetta montana species complex is an excellent example where distinct song patterns have disclosed multiple recently described species. Indeed, two taxa turned out to be especially diverse in that they form a "complex within the complex": the Cicadetta cerdaniensis song group (four species studied previously) and Cicadetta brevipennis (examined in details here). Based on acoustic, morphological, molecular, ecological and spatial data sampled throughout their broad European distribution, we find that Cicadetta brevipennis s. l. comprises five lineages. The most distinct lineage is identified as Cicadetta petryi Schumacher, 1924, which we re-assign to the species level. Cicadetta brevipennis litoralis Puissant & Hertach ssp. n. and Cicadetta brevipennis hippolaidica Hertach ssp. n. are new to science. The latter hybridizes with Cicadetta brevipennis brevipennis Fieber, 1876 at a zone inferred from intermediate song patterns. The fifth lineage requires additional investigation. The C. cerdaniensis and the C. brevipennis song groups exhibit characteristic, clearly distinct basic song patterns that act as reproductive barriers. However, they remain completely intermixed in the Bayesian and maximum likelihood COI and COII mitochondrial DNA phylogenies. The closest relative of each of the four cerdaniensis group species is a brevipennis group taxon. In our favoured scenario the phylogenetic pairs originated in common Pleistocene glacial refuges where the taxa speciated and experienced sporadic inter-group hybridization leading to extensive introgression and mitochondrial capture.