Histone modifications have been widely correlated with genetic activities. However, how these posttranslational modifications affect the dynamics and the structure of chromatin is poorly understood. Here, we describe the incorporation of the exogenous histone proteins into the slime mold Physarum polycephalum, which has been revealed to be a valuable tool for examining different facets of the function histones in chromatin dynamics like replication-coupled chromatin assembly, histone exchange, and nucleosome turnover.
Keywords: Assembly; Chromatin; Exchange; Histone modification; Nucleosome; Physarum polycephalum; Turnover.