Background: The objective of this study was to characterize the degree, pattern, lesion site, and temporal evolution of sudomotor dysfunction in multiple system atrophy (MSA) and to evaluate differences by parkinsonian (MSA-parkinsonism) and cerebellar (MSA-cerebellar) subtypes.
Methods: All cases of MSA evaluated at Mayo Clinic Rochester between 2005 and 2010 with postganglionic sudomotor testing and thermoregulatory sweat test were reviewed. Pattern and lesion site (preganglionic, postganglionic, or mixed) were determined based on thermoregulatory sweat test and postganglionic sudomotor testing.
Results: The majority of the 232 patients were MSA-parkinsonism (145, 63%). Initial postganglionic sudomotor testing was abnormal in 59%, whereas thermoregulatory sweat test was abnormal in 95% of all patients. MSA-parkinsonism patients were more likely to have an abnormal thermoregulatory sweat test compared with MSA-cerebellar (98% versus 90%, P = 0.006) and had a higher mean percentage of anhidrosis (57%) compared with MSA-cerebellar (48%; P = 0.033). Common anhidrosis patterns were regional (38%) and global (35%). The site of the lesion was preganglionic in 47% and mixed (preganglionic and postganglionic) in 41%. The increase in anhidrosis per year was 6.2% based on 70 repeat thermoregulatory sweat tests performed on 29 patients. The frequency of postganglionic sudomotor abnormalities increased over time.
Conclusions: Our findings suggest: (1) sudomotor dysfunction is almost invariably present in MSA and even more common and severe in MSA-parkinsonism than MSA-cerebellar; (2) a preganglionic pattern of sweat loss is common in MSA; however, pre- and postganglionic abnormalities may coexist; and (3) the increasing frequency of postganglionic sudomotor dysfunction over time suggests involvement of postganglionic fibers or sweat glands later in the disease course. © 2016 International Parkinson and Movement Disorder Society.
Keywords: ataxia; autonomic; multiple system atrophy; parkinsonism; α-synuclein.
© 2016 International Parkinson and Movement Disorder Society.