The dynamics of actin cytoskeleton have been shown to play a critical role during platelet activation. Palladin is an actin-associated protein, serving as a cytoskeleton scaffold to bundle actin fibers and actin cross linker. The functional role of palladin on platelet activation has not been investigated. Here, we characterized heterozygous palladin knockout (palladin+/-) mice to elucidate the platelet-related functions of palladin. The results showed that palladin was expressed in platelets and moderate palladin deficiency accelerated hemostasis and arterial thrombosis. The aggregation of palladin+/- platelets was increased in response to low levels of thrombin, U46619, and collagen. We also observed enhanced spreading of palladin+/- platelets on immobilized fibrinogen (Fg) and increased rate of clot retraction in platelet-rich plasma (PRP) containing palladin+/- platelets. Furthermore, the activation of the small GTPase Rac1 and Cdc42, which is associated with cytoskeletal dynamics and platelet activation signalings, was increased in the spreading and aggregating palladin+/- platelets compared to that in wild type platelets. Taken together, these findings indicated that palladin is involved in platelet activation and arterial thrombosis, implying a potent role of palladin in pathophysiology of thrombotic diseases.
Keywords: Cdc42; Knockout mice; Paladin; Platelet activation; Rac1.
Copyright © 2016 Elsevier Ltd. All rights reserved.