The DNA chaperone HMGB1 potentiates the transcriptional activity of Rel1A in the mosquito Aedes aegypti

Insect Biochem Mol Biol. 2017 Jan:80:32-41. doi: 10.1016/j.ibmb.2016.11.006. Epub 2016 Nov 17.

Abstract

High Mobility Group protein 1 (HMGB1) is a non-histone, chromatin-associated nuclear protein that functions in regulating eukaryotic gene expression. We investigated the influence and mechanism of action of Aedes aegypti HMGB1 (AaHMGB1) on mosquito Rel1A-mediated transcription from target gene promoters. The DNA-binding domain (RHD) of AaRel1A was bacterially expressed and purified, and AaHMGB1 dramatically enhanced RHD binding to consensus NF-kB/Rel DNA response elements. Luciferase reporter analyses using a cecropin gene promoter showed that AaHMGB1 potentiates the transcriptional activity of AaRel1A in Aag-2 cells. Moreover, overexpression of AaHMGB1 in Aag-2 cells led to an increase in mRNA levels of antimicrobial peptide genes. In vitro GST pull-down assays revealed that the presence of DNA is a pre-requisite for assembly of a possible ternary complex containing DNA, AaHMGB1 and AaRel1A. Notably, DNA bending by AaHMGB1 enhanced the binding of AaRel1A to a DNA fragment containing a putative NF-kB/Rel response element. Importantly, AaHMGB1 was identified as a potential immune modulator in A. aegypti through AaHMGB1 overexpression or RNAi silencing in Aag-2 cells followed by bacterial challenge or through AaHMGB1 RNAi knockdown in mosquitoes followed by Dengue virus (DENV) infection. We propose a model in which AaHMGB1 bends NF-kB/Rel target DNA to recruit and allow more efficient AaRel1A binding to activate transcription of effector genes, culminating in a stronger Toll pathway-mediated response against DENV infection.

Keywords: Aedes aegypiti; DNA bending; Dengue virus; High mobility group B1 protein; Nf-kB/Rel; Transcription factor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes / genetics*
  • Aedes / metabolism
  • Animals
  • DNA / genetics
  • DNA / metabolism
  • HMGB1 Protein / genetics*
  • HMGB1 Protein / metabolism
  • Insect Proteins / genetics*
  • Insect Proteins / metabolism
  • Molecular Chaperones / genetics*
  • Molecular Chaperones / metabolism

Substances

  • HMGB1 Protein
  • Insect Proteins
  • Molecular Chaperones
  • DNA