Gamma index comparison has been established as a method for patient specific quality assurance in IMRT. Detector arrays can replace radiographic film systems to record 2D dose distributions and fulfill quality assurance requirements. These electronic devices present spatial resolution disadvantages with respect to films. This handicap can be partially overcome with a multiple acquisition sequence of adjacent 2D dose distributions. The detector spatial response influence can also be taken into account through the convolution of the calculated dose with the detector spatial response. A methodology that employs both approaches could allow for enhancements of the quality assurance procedure. 35 beams from different step and shoot IMRT plans were delivered on a phantom. 2D dose distributions were recorded with a PTW-729 ion chamber array for individual beams, following the multiple acquisition methodology. 2D dose distributions were also recorded on radiographic films. Measured dose distributions with films and with the PTW-729 array were processed with the software RITv5.2 for Gamma index comparison with calculated doses. Calculated dose was also convolved with the ion chamber 2D response and the Gamma index comparisons with the 2D dose distribution measured with the PTW-729 array was repeated. 3.7 ± 2.7% of points surpassed the accepted Gamma index when using radiographic films compared with calculated dose, with a minimum of 0.67 and a maximum of 13.27. With the PTW-729 multiple acquisition methodology compared with calculated dose, 4.1 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 1.44 and a maximum of 11.26. With the PTW- multiple acquisition methodology compared with convolved calculated dose, 2.7 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 0.42 and a maximum of 5.75. The results obtained in this work suggest that the comparison of merged adjacent dose distributions with convolved calculated dose represents an enhancement in the methodology for IMRT patient specific quality assurance with the PTW-729 ion chamber array.
Keywords: Detector spatial response; Multiple acquisition sequence; PTW-729 ion chamber array; Patient specific IMRT quality assurance.