Entamoeba histolytica is the causative agent of amoebic liver abscess (ALA), which course with an uncontrolled inflammation and nitro-oxidative stresses, although it is well known that amoeba has an effective defence mechanisms against this toxic environment, the underlying molecular factors responsible for progression of tissue damage remain largely unknown. The purpose of the present study was to determine during the acute stage of ALA in hamsters, the involvement of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor-kappa B (NF-κB), which are activated in response to oxidative stress. From 12 h post-infection the ALA was visible, haematoxylin-eosin and Masson's trichrome stains were consistent with these observations, and alanine aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase serum activities were increased too. At 48 h after infection, liver glycogen content was significantly reduced. Western blot analyses showed that 4-Hydroxy-2-nonenal peaked at 12 h, while glycogen synthase kinase-3β, cleaved caspase-3, pNF-κB, interleukin-1β and tumour necrosis factor-α were overexpressed from 12 to 48 h post-infection. Otherwise, Nrf2 and superoxide dismutase-1, decreased at 48 h and catalase declined at 36 and 48 h. Furthermore, heme oxygenase-1 was increased at 12 and 24 h and decreased to normal levels at 36 and 48 h. These findings suggest for the first time that the host antioxidant system of Nrf2 is influenced during ALA.
Keywords: E. histolytica; GSK-3β; NF-kappa B; Nrf2; amoebic liver abscess; cleaved caspase-3; oxidative stress.