In this work, we explored the potential of thermo-sensitive PLGA-PEG-PLGA with sol-gel transition temperature around 32℃ as an intramuscular vaccine delivery system by using ovalbumin as a model antigen. First, in vitro release test showed that the PLGA-PEG-PLGA-deriving hydrogels could release ovalbumin in vitro in a more sustainable way. From fluorescence living imaging, 50-200 mg/mL of PLGA-PEG-PLGA formulations could release antigen in a sustainable manner in vivo, suggesting that the PLGA-PEG-PLGA hydrogel worked as an antigen-depot. Further, the sustainable antigen release from the PLGA-PEG-PLGA hydrogels increased antigen availability in the spleens of the immunized mice. The intramuscular immunization results showed that 50-200 mg/mL of PLGA-PEG-PLGA formulations promoted significantly more potent antigen-specific IgG immune response. In addition, 200 mg/mL of PLGA-PEG-PLGA formulation significantly enhanced the secretion of both Th1 and Th2 cytokines. From in vitro splenocyte proliferation assay, 50-200 mg/mL of PLGA-PEG-PLGA formulations all initiated significantly higher splenocyte activation. These results indicate that the thermo-sensitive and injectable PLGA-PEG-PLGA hydrogels (particularly, 200 mg/mL of PLGA-PEG-PLGA-based hydrogel) own promising potential as an intramuscular vaccine delivery system.
Keywords: PLGA-PEG-PLGA; Thermo-sensitive hydrogel; intramuscular immunization; ovalbumin; vaccine delivery system.