Background: Genotyping platforms for common red blood cell (RBC) antigens have been successfully applied in Caucasian and black populations but not in Chinese populations. In this study, a genotyping assay based on multiplex ligation-dependent probe amplification (MLPA) technology was applied in a Chinese population to validate the MLPA probes. Subsequently, the comprehensive distribution of 17 blood group systems also was obtained.
Study design and methods: DNA samples from 200 Chinese donors were extracted and genotyped using the blood-MLPA assay. To confirm the MLPA results, a second independent genotyping assay (ID Core+) was conducted in 40 donors, and serological typing of 14 blood-group antigens was performed in 91 donors. In donors who had abnormal copy numbers of an allele (DI and GYPB) determined by MLPA, additional experiments were performed (polymerase chain reaction, sequencing, and flow cytometry analysis).
Results: The genotyping results obtained using the blood-MLPA and ID Core+ assays were consistent. Serological data were consistent with the genotyping results except for one donor who had a Lu(a-b-) phenotype. Of the 17 blood group systems, the distribution of the MNS, Duffy, Kidd, Diego, Yt, and Dombrock systems was polymorphic. The Mur and Sta antigens of the MNS system were distributed with a frequency of 9% (18 of 200) and 2% (4 of 200), respectively. One donor with chimerism and one who carried a novel DI*02(A845V) allele, which predicts the depression of Dib antigen expression, were identified.
Conclusions: The blood-MLPA assay could easily identify the common blood-group alleles and correctly predicted phenotype in the Chinese population. The Mur and Sta antigens were distributed with high frequency in a Southern Chinese Han population.
© 2016 AABB.