MYSM1 is a chromatin-binding histone deubiquitinase. MYSM1 mutations in humans result in lymphopenia whereas loss of Mysm1 in mice causes severe hematopoietic abnormalities, including an early arrest in B cell development. However, it remains unknown whether MYSM1 is required at later checkpoints in B cell development or for B cell-mediated immune responses. We analyzed conditional mouse models Mysm1fl/flTg.mb1-cre, Mysm1fl/flTg.CD19-cre, and Mysm1fl/flTg.CD21-cre with inactivation of Mysm1 at prepro-B, pre-B, and follicular B cell stages of development. We show that loss of Mysm1 at the prepro-B cell stage in Mysm1fl/flTg.mb1-cre mice results in impaired B cell differentiation, with an ∼2-fold reduction in B cell numbers in the lymphoid organs. Mysm1fl/flTg.mb1-cre B cells also showed increased expression of activation markers and impaired survival and proliferation. In contrast, Mysm1 was largely dispensable from the pre-B cell stage onward, with Mysm1fl/flTg.CD19-cre and Mysm1fl/flTg.CD21-cre mice showing no alterations in B cell numbers and largely normal responses to stimulation. MYSM1, therefore, has an essential role in B cell lineage specification but is dispensable at later stages of development. Importantly, MYSM1 activity at the prepro-B cell stage of development is important for the normal programming of B cell responses to stimulation once they complete their maturation process.
Keywords: B cell development; conditional knockout mice; humoral immunity.
© Society for Leukocyte Biology.