Inferring phenotypic causal structures among meat quality traits and the application of a structural equation model in Japanese Black cattle

J Anim Sci. 2016 Oct;94(10):4133-4142. doi: 10.2527/jas.2016-0554.

Abstract

Meat quality is one of the most important traits determining carcass price in the Japanese beef market. Optimized breeding goals and management practices for the improvement of meat quality traits requires knowledge regarding any potential functional relationships between them. In this context, the objective of this research was to infer phenotypic causal networks involving beef marbling score (BMS), beef color score (BCL), firmness of beef (FIR), texture of beef (TEX), beef fat color score (BFS), and the ratio of MUFA to SFA (MUS) from 11,855 Japanese Black cattle. The inductive causation (IC) algorithm was implemented to search for causal links among these traits and was conditionally applied to their joint distribution on genetic effects. This information was obtained from the posterior distribution of the residual (co)variance matrix of a standard Bayesian multiple trait model (MTM). Apart from BFS, the IC algorithm implemented with 95% highest posterior density (HPD) intervals detected only undirected links among the traits. However, as a result of the application of 80% HPD intervals, more links were recovered and the undirected links were changed into directed ones, except between FIR and TEX. Therefore, 2 competing causal networks resulting from the IC algorithm, with either the arrow FIR → TEX or the arrow FIR ← TEX, were fitted using a structural equation model () to infer causal structure coefficients between the selected traits. Results indicated similar genetic and residual variances as well as genetic correlation estimates from both structural equation models. The genetic variances in BMS, FIR, and TEX from the structural equation models were smaller than those obtained from the MTM. In contrast, the variances in BCL, BFS, and MUS, which were not conditioned on any of the other traits in the causal structures, had no significant differences between the structural equation model and MTM. The structural coefficient for the path from MUS (BCL) to BMS showed that a 1-unit improvement in MUS (BCL) resulted in an increase of 0.85 or 1.45 (an decrease of 0.52 or 0.54) in BMS in the causal structures. The analysis revealed some interesting functional relationships, direct genetic effects, and the magnitude of the causal effects between these traits, for example, indicating that BMS would be affected by interventions on MUS and BCL. In addition, if interventions existed in this scenario, a breeding strategy based only on the MTM would lead to a mistaken selection for BMS.

MeSH terms

  • Algorithms
  • Animals
  • Bayes Theorem
  • Breeding
  • Cattle / genetics*
  • Cattle / physiology*
  • Genetic Variation
  • Male
  • Models, Genetic
  • Red Meat*