Objective: This study aimed to elucidate the role of Transforming growth factor (TGF)-β1 signaling in the proliferation of airway smooth muscle cells (ASMCs).
Background: TGF-β1 is an important cytokine in airway remodeling in asthma. However, results of studies focusing on the effect of TGFβ1 on proliferation of ASMCs are controversial.
Methods: An allergic model that mimics airway remodeling in chronic asthma was established and primary ASMCs were cultured. Cell proliferation was detected by viable cell counting and Cell Counting Kit (CCK)-8 analysis. Expression and phosphorylation of Smad3, type 1 TGFβ receptor (TGFβRI), type 2 TGFβ receptor (TGFβRII), extracellular signal-regulated kinase (ERK)-1/2, p38 mitogen-activated protein kinase (MAPK), C-Jun N-terminal kinase (JNK) and AKT were detected by western blot. siRNAs were used to knock down Smad3 and TGFβRII.
Results: Smad3 and TGFβRII were up-regulated in primary ASMCs isolated from ovalbumin (OVA)-sensitized mice as compared with ASMCs isolated from unsensitized control mice, which persisted for at least four passages. TGFβ1 stimulated proliferation of ASMCs isolated from OVA-sensitized mice, which was inhibited by specific siRNA targeting Smad3 or TGFβRII. However ASMCs from control mice showed no proliferative response to TGFβ1. TGFβ1-induced proliferation of ASMCs from OVA-sensitized mice was markedly attenuated by PD-98059, a specific ERK1/2 inhibitor. TGFβ1 induced ERK1/2 phosphorylation within 15 minute, which was partially blocked by specific inhibitor of Smad3 (SIS3).
Conclusions: ASMCs isolated from OVA-sensitized mice showed hyper-proliferation upon TGFβ1 stimulation. This might have been associated with up-regulated Smad3 and TGFβRII and mediated by ERK1/2 downstream to Smad3.
Keywords: Airway smooth muscle cell; ERK1/2; Smad3; TGFβ1; asthma.