Mild therapeutic hypothermia is a candidate for the treatment of traumatic brain injury (TBI). However, the role of mild hypothermia in neuronal sprouting after TBI remains obscure. We used a fluid percussion injury (FPI) model to assess the effect of mild hypothermia on pericontusion neuronal sprouting after TBI in rats. Male Sprague-Dawley rats underwent FPI or sham surgery, followed by mild hypothermia treatment (33°C) or normothermia treatment (37°C) for 3 h. All the rats were euthanized at 7 days after FPI. Neuronal sprouting that was confirmed by an increase in growth associated protein-43 (GAP-43) expression was evaluated using immunofluorescence and Western blot assays. The expression levels of several intrinsic and extrinsic sprouting-associated genes such as neurite outgrowth inhibitor A (NogoA), phosphatase and tensin homolog (PTEN), and suppressor of cytokine signaling 3 (SOCS3) were analyzed by quantitative real-time polymerase chain reaction (RT-PCR). Our results revealed that mild hypothermia significantly increased the expression level of GAP-43 and dramatically suppressed the expression level of interleukin-6 (IL-6) and SOCS3 at 7 days after FPI in the ipsilateral cortex compared with that of the normothermia TBI group. These data suggest that post-traumatic mild hypothermia promotes pericontusion neuronal sprouting after TBI. Moreover, the mechanism of hypothermia-induced neuronal sprouting might be partially associated with decreased levels of SOCS3.
Keywords: TBI; animal studies; axonal regeneration; hypothermia; neuroplasticity.