Influence of Fasting Status and Sample Preparation on Metabolic Biomarker Measurements in Postmenopausal Women

PLoS One. 2016 Dec 8;11(12):e0167832. doi: 10.1371/journal.pone.0167832. eCollection 2016.

Abstract

Background: Epidemiologic data linking metabolic markers-such as insulin, insulin-like growth factors (IGFs)-and adipose tissue-derived factors with cancer are inconsistent. Between-study differences in blood collection protocols, in particular participant's fasting status, may influence measurements.

Methods: We investigated the impact of fasting status and blood sample processing time on components of the insulin/IGF axis and in adipokines in a controlled feeding study of 45 healthy postmenopausal-women aged 50-75 years. Fasting blood samples were drawn (T0), after which subjects ate a standardized breakfast; subsequent blood draws were made at 1 hour (T1), 3 hours (T3), and 6 hours (T6) after breakfast. Serum samples were assayed for insulin, C-peptide, total- and free-IGF-I, IGF-binding protein [BP]-1 and -3, total and high molecular weight (HMW)-adiponectin, retinol binding protein-4, plasminogen activator inhibitor (PAI)-1, and resistin.

Results: Insulin and C-peptide levels followed similar postprandial trajectories; intra-class correlation coefficients [ICC] for insulin = 0.75, (95%CI:0.64-0.97) and C-peptide (ICC = 0.66, 95%CI:0.54-0.77) were similarly correlated in fasting (Spearman correlation, r = 0.78, 95%CI:0.64-0.88) and postprandial states (T1, r = 0.77 (95%CI: 0.62-0.87); T3,r = 0.78 (95%CI: 0.63-0.87); T6,r = 0.77 (95%CI: 0.61-0.87)). Free-IGF-I and IGFBP-1 levels were also affected by fasting status, whereas total-IGF-I and IGFBP-3 levels remained unchanged. Levels of adipokines were largely insensitive to fasting status and blood sample processing delays.

Conclusion: Several components of the insulin/IGF axis were significantly impacted by fasting state and in particular, C-peptide levels were substantially altered postprandially and in a similar manner to insulin.

MeSH terms

  • Aged
  • Biomarkers / metabolism*
  • Fasting*
  • Female
  • Humans
  • Metabolism*
  • Middle Aged
  • Postmenopause*

Substances

  • Biomarkers