Designing economical and high-efficiency electrocatalysts for overall water splitting is urgently needed but remains a long and arduous task. Herein, we synthesized hydrotalcite-like Ni(OH)2 nanosheets growing on Ni foam (Ni(OH)2/NF) via a facile one-pot hydrothermal method. With the assistance of a rotating oven, Ni(OH)2 nanosheets demonstrate a regular hexagonal morphology and homogeneous distribution. The resultant Ni(OH)2/NF electrode shows superior electrocatalytic activity and durability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as the overall water splitting. The Ni(OH)2/NF electrode delivers 20 mA·cm-2 at an overpotential of 172 mV for HER, 50 mA·cm-2 at an overpotential of 330 mV for OER, and 10 mA·cm-2 at a cell voltage of 1.68 V for water electrolysis in 1.0 M KOH. The present study demonstrates a feasible and effective strategy to prepare highly efficient electrocatalysts for water electrolysis.
Keywords: Ni(OH)2; hydrogen evolution reaction; nickel foam; overall water splitting; oxygen evolution reaction.