Porous TiO2 Nanotubes with Spatially Separated Platinum and CoOx Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production

Angew Chem Int Ed Engl. 2017 Jan 16;56(3):816-820. doi: 10.1002/anie.201611137. Epub 2016 Dec 14.

Abstract

Efficient separation of photogenerated electrons and holes, and associated surface reactions, is a crucial aspect of efficient semiconductor photocatalytic systems employed for photocatalytic hydrogen production. A new CoOx /TiO2 /Pt photocatalyst produced by template-assisted atomic layer deposition is reported for photocatalytic hydrogen production on Pt and CoOx dual cocatalysts. Pt nanoclusters acting as electron collectors and active sites for the reduction reaction are deposited on the inner surface of porous TiO2 nanotubes, while CoOx nanoclusters acting as hole collectors and active sites for oxidation reaction are deposited on the outer surface of porous TiO2 nanotubes. A CoOx /TiO2 /Pt photocatalyst, comprising ultra-low concentrations of noble Pt (0.046 wt %) and CoOx (0.019 wt %) deposited simultaneously with one atomic layer deposition cycle, achieves remarkably high photocatalytic efficiency (275.9 μmol h-1 ), which is nearly five times as high as that of pristine TiO2 nanotubes (56.5 μmol h-1 ). The highly dispersed Pt and CoOx nanoclusters, porous structure of TiO2 nanotubes with large specific surface area, and the synergetic effect of the spatially separated Pt and CoOx dual cocatalysts contribute to the excellent photocatalytic activity.

Keywords: atomic layer deposition; charge separation; dual cocatalysts; photocatalytic hydrogen production; porous TiO2 nanotubes.

Publication types

  • Research Support, Non-U.S. Gov't