Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials

Nano Lett. 2017 Jan 11;17(1):228-235. doi: 10.1021/acs.nanolett.6b03920. Epub 2016 Dec 14.

Abstract

Hyperbolic polaritons in van der Waals (vdW) materials recently attract a lot of attention, owing to their strong electromagnetic field confinement, ultraslow group velocities, and long lifetimes. Typically, volume-confined hyperbolic polaritons (HPs) are studied. Here we show the first near-field optical images of hyperbolic surface polaritons (HSPs), which are confined and guided at the edges of thin flakes of a vdW material. To that end, we applied scattering-type scanning near-field optical microscopy (s-SNOM) for launching and real-space nanoimaging of hyperbolic surface phonon polariton modes on a hexagonal boron nitride (h-BN) flake. Our imaging data reveal that the fundamental HSP mode exhibits a stronger field confinement (shorter wavelength), smaller group velocities, and nearly identical lifetimes, as compared to the fundamental HP mode of the same h-BN flake. Our experimental data, corroborated by theory, establish a solid basis for future studies and applications of HPs and HSPs in vdW materials.

Keywords: Dyakonov surface waves; Hyperbolic surface polaritons; h-BN; near-field microscopy; phonon polaritons; s-SNOM; van der Waals materials.

Publication types

  • Letter
  • Research Support, Non-U.S. Gov't