The photoactive yellow protein (PYP) from Halorhodospira halophila (Hhal) is a bacterial photoreceptor and model system for exploring functional protein dynamics. We report ultrafast spectroscopy experiments that probe photocycle initiation dynamics in the PYP domain from the multidomain PYP-phytochrome-related photoreceptor from Rhodospirillum centenum (Rcen). As with Hhal PYP, Rcen PYP exhibits similar excited-state dynamics; in contrast, Rcen PYP exhibits altered photoproduct ground-state dynamics in which the primary I0 intermediate as observed in Hhal PYP is absent. This property is attributed to a tighter, more sterically constrained binding pocket around the p-coumaric acid chromophore due to a change in the Rcen PYP protein structure that places Phe98 instead of Met100 in contact with the chromophore. Hence, the I0 state is not a necessary step for the initiation of productive PYP photocycles and the ubiquitously studied Hhal PYP may not be representative of the broader PYP family of photodynamics.