Total internal reflection microscopy (TIRM) is a well-known technique to measure weak forces between colloidal particles suspended in a liquid and a solid surface by using evanescent light scattering. In contrast to typical TIRM experiments, which are carried out at liquid-solid interfaces, here we extend this method to liquid-liquid interfaces. Exemplarily, we demonstrate this concept by investigating the interactions of micrometer-sized polystyrene particles and oil droplets near a flat water-oil interface for different concentrations of added salt and ionic surfactant (SDS). We find that the interaction is well described by the superposition of van der Waals and double layer forces. Interestingly, the interaction potentials are, within the SDS concentration range studied here, rather independent of the surfactant concentration, which suggests a delicate counter play of different interactions at the oil-water interface and provides interesting insights into the mechanisms relevant for the stability of emulsions.